7003全讯入口 7003全讯入口
网站首页

7003全讯入口“博约学术论坛”-杨森-第370期

来源:段嘉华 教授 作者:杨森, 博士 (美国范德堡大学) 发布时间:2023-03-02

邀请人: 段嘉华 教授

报告人: 杨森, 博士 (美国范德堡大学)

时间: 2023-03-02

地点:

主讲人简介:

­7003全讯入口博约学术论坛系列报告

370

题目:在亚波长尺度操纵光:从微流通道到自由空间

报告人:杨森, 博士 (美国范德堡大学)

间:2023年3月2日(周四)上午 9:00

点:腾讯会议,会议号:511 734 837

摘要:

微纳光学共振结构通过在亚波长尺度调节局域电磁场的分布,可以增强近场的光与物质相互作用。因此,在光陷捕获、光学传感、微纳激光、非线性光学等领域,这些结构展现了许多新奇的现象。当材料的吸收不可忽略时,共振引起的局域电场增强让我们能够在微纳尺度调节系统的温度场分布,进而使我们能对微流通道中液体的流动进行操纵。在本次报告中,我将简要介绍我们课题组通过设计等离激元和电介质微纳光学结构,在纳米粒子的操纵和捕获、光学传感以及微纳光源等领域取得的一些成果。

简历:

杨森是美国范德堡大学工程学院五年级在读博士。他已在国际著名期刊,如Nature NanotechnologyPhysical Review LettersNano LettersACS Photonics等,以第一作者或合作作者身份发表了10余篇论文。他于2015年和2017年分别从哈尔滨工业大学理学院物理系获得理学学士和理学硕士学位。他目前的研究主要关注开发具有窄线宽、高场增强特点的微纳共振结构(如光子晶体、连续谱束缚态超表面等),并将其应用于纳米粒子操纵、光学传感和微纳光源等领域。他的研究涉及近场光与物质相互作用以及微流通道动力学,具有跨学科的特点。他的研究可以应用于纳米粒子自组装、光谱增强、光子发射增强以及纳米尺度生物分子探测等领域。

联系方式:duanjiahua@bit.edu.cn

邀请人: 段嘉华 教授

址:/

承办单位:7003全讯入口、先进光电量子结构设计与测量教育部重点实验室

*TitleManipulating light at subwavelength scale: from microfluidic channel to free space

*ReporterSen Yang

*Time03/02/2023

*PlaceOnline

*Contact Person: Jiahua Duan

*Abstract:

Nano-optical resonant structures can enhance the interaction between light and matter in the near field by tuning the distribution of local electromagnetic fields at subwavelength scales. Therefore, these structures have demonstrated many novel phenomena in various fields, such as optical trapping, optical sensing, micro/nano lasers, and nonlinear optics. When the material absorption cannot be neglected, the locally enhanced electric field induced by resonance enables us to manipulate the temperature field distribution in micro/nano systems and thereby control the fluid flow in microfluidic channels. In this presentation, I will briefly introduce some achievements of our research group in the manipulation and trapping of nanoparticles, optical sensing, and micro/nano light sources by designing plasmonic and dielectric nano-optical structures.

*Profile

Sen Yang is a fifth-year PhD candidate currently studying at Vanderbilt University in the United States. He received his bachelor's and master's degrees from Harbin Institute of Technology in China in 2015 and 2017, respectively. His PhD research focuses on developing high-Q resonant dielectric nanostructures, such as photonic crystals and bound states in the continuum, for efficient nanoparticle trapping and manipulation. Yang's research is multidisciplinary and combines the study of light-matter interactions at the near-field with hydrodynamic processes in microfluidics. The applications of his research cover a range of fields, including self-assembly of nanoparticles, enhanced spectroscopy, enhanced light emission, and high-sensitivity detection of nanoscale biological objects. Recently, Yang's interests have also expanded to include thermal emission at mid-IR based on high-Q resonances.