Multidirectional Sliding Ferroelectricity of Rhombohedral-Stacked InSe for Reconfigurable Photovoltaics and Imaging Applications
来源: 作者: 发布时间:2024-12-23Abstract
Through the stacking technique of 2D materials, the interfacial polarization can be switched by an interlayer sliding, known as sliding ferroelectricity, which is advantageous in ultra-thin thickness, high switching speed, and high fatigue resistance. However, uncovering the relationship between the sliding path and the polarization state in rhombohedral-stacked materials remains a challenge, which is the key to 2D sliding ferroelectricity. Here, layer-dependent multidirectional sliding ferroelectricity in rhombohedral-stacked InSe (γ-InSe) is reported via dual-frequency resonance tracking piezoresponse force microscopy and conductive atomic force microscopy. The graphene/γ-InSe/graphene tunneling device exhibits a tunable bulk photovoltaic effect with a photovoltaic current density of ≈15 mA cm−2 due to multiple polarization states. The generation of dome-like domain walls is observed experimentally, which is attributed to the multidirectional sliding-induced domains based on the theoretical calculations. Furthermore, the ferroelectric polarization in γ-InSe ensures that the tunneling device has a high photo responsivity of ≈255 A W−1 and a fast response time for real-time imaging. The work not only provides insights into the multidirectional sliding ferroelectricity of rhombohedral-stacked 2D materials but also highlights their potential for tunable photovoltaics and imaging applications.